Emotion Recognition Using Narrowband Spatial Features of Electroencephalography

نویسندگان

چکیده

Automatic recognition of human emotion has become an interesting topic among brain-computer interface (BCI) researchers. Emotion is one the most fundamental features a subject. With proper analysis emotion, inner state subject can be assessed directly. The brain response competently represented by electroencephalography (EEG). selection potential in EEG related to very important task for developing effective system. In this paper, discriminative computed from rhythmic components are used recognize emotional states. narrowband theta, alpha, beta, and gamma extracted multichannel signals using filter bank implementation. short-time entropy energy each components. spatial filtering been performed on entropy-energy space common pattern (CSP). Thus obtained employed states support vector machine (SVM) classifier. publicly available two datasets DEAP SEED evaluate performance proposed method. experimental results reflect that higher accuracy frequency subbands (beta gamma) than lower (theta alpha). combination all better individual subband signals. method outperforms recently developed algorithms recognition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emotion Recognition using Acoustic and Lexical Features

In this paper we present an innovative approach for utterance-level emotion recognition by fusing acoustic features with lexical features extracted from automatic speech recognition (ASR) output. The acoustic features are generated by combining: (1) a novel set of features that are derived from segmental Mel Frequency Cepstral Coefficients (MFCC) scored against emotion-dependent Gaussian mixtur...

متن کامل

Emotion Recognition from Speech using Discriminative Features

Creating an accurate Speech Emotion Recognition (SER) system depends on extracting features relevant to that of emotions from speech. In this paper, the features that are extracted from the speech samples include Mel Frequency Cepstral Coefficients (MFCC), energy, pitch, spectral flux, spectral roll-off and spectral stationarity. In order to avoid the 'curse of dimensionality', statis...

متن کامل

Speech emotion recognition using nonlinear dynamics features

Recent developments in man–machine interaction have motivated researchers to recognize human emotion from speech signals. In this study, we propose using nonlinear dynamics features (NLDs) for emotion recognition. NLDs are extracted from the geometrical properties of the reconstructed phase space of speech signals. The traditional prosodic and spectral features are also used as a benchmark. The...

متن کامل

Emotion recognition from speech using prosodic features

Emotion recognition, a key step of affective computing, is the process of decoding an embedded emotional message from human communication signals, e.g. visual, audio, and/or other physiological cues. It is well-known that speech is the main channel for human communication and thus vital in the signalling of emotion and semantic cues for the correct interpretation of contexts. In the verbal chan...

متن کامل

Emotion Recognition and Emotion Spotting Improvement Using Formant-Related Features

Emotion has an important role in naturalness of man-machine communication and computerized emotion recognition from speech is investigated by many researchers in the recent decades. In this paper, the effect of formant-related features on improving the performance of emotion detection systems is experimented. To do this, various forms and combinations of the first three formants are concatenate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3270177